Files
Download Full Text (1.4 MB)
Description
Due to the rapid growth of children and the cost of myoelectric technology, children are not given the same opportunities to use myoelectric prosthetics as adults. The Muscle Activated Prosthesis (MAP) team seeks to reconcile this by creating an affordable, trans-radial, myoelectric prosthesis that utilizes the flexibility of 3D printing technology for a fourteen-year-old congenital amputee named Lily. The MAP team has completed the design and prototype of a myoelectric prosthesis with a material cost of approximately $1,000 as opposed to the $10,000-$20,000 cost of clinically accepted myoelectric prosthetic upper limbs. The 3D printed prosthetic arm prototype incorporates electromyography (EMG) electrodes, a motor and tendon system, an open-source prosthetic hand design, a custom printed circuit board (PCB), and lithium-ion battery power. The opening and closing of the prosthetic hand is controlled by the myoelectric signals from the user’s forearm contractions which can be tested by the team using our adaptive prosthetic attachment. All these components result in an affordable prosthetic that has the potential for customization and adaptation to different sized limbs.
Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.
Publication Date
Spring 2022
Keywords
Messiah University, Messiah College, Engineer, community, service
Disciplines
Engineering
Recommended Citation
Campbell, Paige M.; Santelli, Antonio P.; Wright, Caleb J.; Haseltine, Lindsay L.; Monday, Jaymie R.; Sampson, Meghan L.; and Howell, Tim, "Muscle Activated 3D Printed Prosthetic Arm" (2022). 2022 Collaboratory/Engineering Symposium. 14.
https://mosaic.messiah.edu/engr2022/14
Comments
Comments:
The work presented in this document has been provided solely for educational and edification purposes. All materials are composed by students of Messiah University and are not certified by any means. They do not constitute professional consultation and require the examination and evaluation by a certified engineer through any product development process. The contents documented are the produced work by the student design team but do not necessarily represent the as-built or as-assembled state of a complete and tested design; faculty, staff, and other professionals involved in our program may have augmented the student engineering work during implementation, which may not be recorded within this document.
Messiah University, the Collaboratory, nor any party related to the composition of this document, shall be liable for any indirect, incidental, special, consequential, or punitive damages, or any loss of profits or revenues, whether incurred directly or indirectly, or other intangible losses, resulting from your access to or use of the provided material; any content obtained from the provided material, or alteration of its content.