Files

Download

Download Full Text (2.2 MB)

Description

The Mechanized Percussion Well Drilling (MPWD) Collaboratory project is assisting in the development of a mechanized well drilling system for drilling shallow water wells in West Africa. Our client, Mr. Joseph Longenecker with Open Door Development (ODD), desires to make water wells accessible to all in this region, but has experienced difficulty drilling through hard soil layers. To overcome this problem, the MPWD team has worked closely with Mr. Joseph Longenecker to develop a mechanized percussion well drilling rig using a rubber friction wheel drive system that is capable of drilling through these harder layers.

Currently, the MPWD team is working to provide recommendations to improve the useful service life of our client’s new, mechanized rig design. The MPWD team’s most recent work includes the design and fabrication of a testing rig to simulate the operation of our client’s full-size rig. The testing rig will allow our team to conduct fatigue testing on a model of the driveline system to analyze the wear patterns on the rubber friction wheel and to estimate its expected service life. The team has also performed a series of finite element analyses on the mast design of our client's rig to evaluate working stresses under static loading and buckling, along with fatigue analysis, to confirm safe operation of the rig and to identify any elements that might require upgrades.

Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.

Publication Date

Spring 2022

Keywords

Messiah University, Messiah College, Engineer, community, service

Disciplines

Engineering

Comments

The work presented in this document has been provided solely for educational and edification purposes. All materials are composed by students of Messiah University and are not certified by any means. They do not constitute professional consultation and require the examination and evaluation by a certified engineer through any product development process. The contents documented are the produced work by the student design team but do not necessarily represent the as-built or as-assembled state of a complete and tested design; faculty, staff, and other professionals involved in our program may have augmented the student engineering work during implementation, which may not be recorded within this document.

Messiah University, the Collaboratory, nor any party related to the composition of this document, shall be liable for any indirect, incidental, special, consequential, or punitive damages, or any loss of profits or revenues, whether incurred directly or indirectly, or other intangible losses, resulting from your access to or use of the provided material; any content obtained from the provided material, or alteration of its content.

Wear Testing of a Mechanized Percussion Well Drilling System for Water Access in West Africa

Included in

Engineering Commons

Share

COinS