Download Full Text (2.8 MB)


Clubfoot is a musculoskeletal birth defect characterized by an inward twisting of an infant’s feet. Currently, a series of casts are used to correct the clubfoot, and a boots-and-bar brace is used to maintain the correction. However, this method has concerns with compliance, comfort, and social stigma. Hope Walks and their clinic in Kijabe, Kenya are interested in implementing a new maintenance brace that addresses these concerns. Mr. Jerald Cunningham, CPO, designed and is utilizing a unilateral clubfoot maintenance brace called the Cunningham Clubfoot Brace. He asserts his brace reduces treatment time, lessens social stigma, and increases child mobility. However, to date, there is not enough published research on its biomechanics and patient success rates to confirm his findings.

The Cunningham Clubfoot Brace Collaboratory project seeks to validate the effectiveness of the Cunningham design through biomedical testing and increase brace availability through sustainable manufacturing. To do this, the team is measuring the biomechanical forces applied by the brace with multiple force sensor systems and an infant foot model. The team is assisting Mr. Cunningham in his plans to use injection molding to increase brace production by scanning and creating CAD files of the brace. The team is also completing a failure and reuse analysis of the Cunningham Brace for the clinic in Kijabe. Furthermore, the ongoing clinical study at CURE International's hospital in Kijabe, Kenya, and Dr. Emily Farrar’s research paper will provide greater insight into the effectiveness of the Cunningham Brace. These collaborative efforts will allow for further understanding of the effectiveness of the Cunningham Brace and its acceptance as an alternative clubfoot maintenance brace.

Publication Date

Spring 2021


Messiah University, Messiah College, Engineer, community, service




The work presented in this document has been provided solely for educational and edification purposes. All materials are composed by students of Messiah University and are not certified by any means. They do not constitute professional consultation and require the examination and evaluation by a certified engineer through any product development process. The contents documented are the produced work by the student design team but do not necessarily represent the as-built or as-assembled state of a complete and tested design; faculty, staff, and other professionals involved in our program may have augmented the student engineering work during implementation, which may not be recorded within this document.

Messiah University, the Collaboratory, nor any party related to the composition of this document, shall be liable for any indirect, incidental, special, consequential, or punitive damages, or any loss of profits or revenues, whether incurred directly or indirectly, or other intangible losses, resulting from your access to or use of the provided material; any content obtained from the provided material, or alteration of its content.

Force Characterization and Manufacturing of a Dynamic Unilateral Clubfoot Brace

Included in

Engineering Commons