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Surface Effects on the Dynamics of Liquid Crystalline Thin Films 

Confined in Nanoscale Cavities 

Alison R. Noble-Luginbuhl 

Renée M. Blanchard 

Ralph G. Nuzzo 

Abstract 

The dynamics of 4-n-pentyl-4‘-cyanobiphenyl (5CB) nematic liquid crystalline thin films 
have been studied in real time using step-scan Fourier transform infrared spectroscopy 
(FTIR). In these studies, the liquid crystal was confined in a nanocavity defined and 
bounded by an interdigitated gold electrode array. The gold microstructures were 
microfabricated on a zinc selenide (IR-transparent) window. The 5CB interactions with 
the ZnSe substrate result in surface-induced ordering of the ultrathin layers (on the 
order of 40 nm). As the films increase in thickness, the nanoscale organization induced 
by the surface layer becomes a less significant contributor to the overall bulk structure 
of the sample. Time-resolved FTIR studies have enabled the measurement of rate 
constants for the orientation and relaxation of the thin films under an applied electric 
field as a direct function of confinement dimensions. Cell thicknesses ranging from 40 to 
300 nm were studied. The measured rate behaviors demonstrate the strong effects of 
the interactions occurring between the surfaces of the ZnSe crystals and the 5CB on the 
dynamics of the liquid crystalline assembly. Time-resolved studies reveal kinetically 
inhomogeneous line shapes for thicker films while ultrathin films maintain kinetically 
homogeneous peaks, suggesting the development of liquid crystalline domains or other 
inhomogeneities over this length scale in the transition from the surface layer to bulk.  

Introduction 

Developing an improved understanding of the molecular-level sensitivities of thin-film 
dynamics to interactions occurring at surfaces and interfaces is a central need for the 
development of a wide range of materials technologies. Representative examples of 
areas in which such behaviors of an organic thin film figure prominently include coatings 
inhibiting corrosion,1 chemical separations involving transport and adsorbate binding in 
thin-film boundary layers,2,3 and the complex functioning of biological membranes (e.g., 
in recognition signaling and active transport).4 This report concerns itself with the 
electrooptical properties and dynamics of nanoscale thin films of liquid crystals, 
materials that are central to the operation of liquid crystal (LC) displays.5 It is now well 
appreciated that a detailed understanding of the dynamics of liquid crystalline materials, 
and their sensitivity to the strong surface binding (so-called anchoring) interactions that 
occur at the cell boundaries, is fundamental to developing improved devices.5 
A number of excellent studies have appeared in which the nature and consequences of 
these interactions have been examined.6-10 The molecular design of the surface binding 
interactions through the use of self-assembled monolayers (SAMs) has proven to be an 
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extremely useful way to manipulate and tailor the LC anchoring interactions.11-16 In this 
study, we concern ourselves with the less well studied and still poorly understood matter 
of the dynamics of a LC thin-film boundary layer in the strong binding limit. This work 
employed an IR cell of unique design17 to examine the electrodynamic responses of 
extremely thin liquid crystalline films to perturbations imposed by an electric field. The 
present report demonstrates and characterizes the profound effects of surface binding 
interactions on both the orientation and relaxation dynamics of these prototypical 
nanoscale organic thin films as well as the length scales over which a transition to 
bulklike properties occurs.  

Experimental Methods 

The fabrication method used to construct an interdigitated array electrode (IDA) thin-film 
cell supported on a ZnSe IR window is described elsewhere.17 In this study, IDAs with 
gold electrodes 40 and 300 nm thick were fabricated. To minimize diffraction effects, we 
used a design based on 15 μm gold bands separated by 15 μm spaces. Two 1 μL drops 
of 4-n-pentyl-4‘-cyanobiphenyl (5CB; BDH Chemical, England) were placed onto the 
IDA fingers to ensure that all the spaces between the fingers were filled. An unpatterned 
ZnSe window was then placed on top of the patterned window and the cell compressed 
using metal weights to squeeze out the excess 5CB and bring the gold fingers into 
contact with the second ZnSe window. The nanocavities are formed by the gold IDA 
bands which serve as a shim for the ZnSe windows. It is likely that some 5CB is 
entrained between the gold bands and the ZnSe crystal. This quantity appears to be 
very small, perhaps of the order of a monolayer or so and, thus, is not of consequence 
for the homogeneity of the electric field intensities experienced by molecules residing 
between the electrode bands. The cell was fabricated and assembled in a clean room to 
prevent airborne particulates (which can exceed several microns in size) from being 
caught in the assembly and thus controlling the thickness of the confined layer. After the 
cell was assembled, the top window was gently sheared back and forth along the 
direction of the interdigitated bands. The cell was then placed in a stainless steel 
sample holder and the areas of the sample surrounding the IDA were masked to ensure 
IR response only from those areas patterned with electrodes (using an open aperture, 
we probed the entire masked area:  a rectangle measuring 1.0 × 0.30 cm).  
After filling the cell with 5CB, a dc potential between 10 and 15 V was repeatedly 
applied across the IDA. This perturbation eliminated hysteresis induced by the initial 
contact and spread of 5CB across the ZnSe and allowed the molecules to settle into a 
reproducible state (sans electric field).  
All infrared measurements were taken with a Bio-Rad (Cambridge, MA) FTS 6000 
spectrometer equipped with a KBr beam splitter and high-temperature ceramic source. 
A rotatable KRS-5 Au wire-grid polarizer was placed in the beam path to select IR 
radiation polarized in directions parallel and perpendicular to the IDA bands. All scans 
were taken using Bio-Rad Win-IR Pro software designed for data acquisition with the 
FTS 6000 spectrometer. The collected interferograms were single-sided (asymmetric) 
and a triangular apodization algorithm was used to weight the interferogram. For both 
rapid-scan and step-scan experiments, a nitrogen-cooled mercury cadmium telluride 
(MCT) detector (Bio-Rad) equipped with a dc-coupled preamplifier was used.  
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Two distinct spectroscopic experiments are reported here:  those involving (1) static and 
(2) dynamic electrical polarization. Rapid-scan experiments used to probe the system 
under static voltage conditions were carried out with an optical modulation of 20 kHz, a 
5 kHz low-pass filter, and a spectral resolution of 4 cm-1. For each spectrum, 1024 
scans were collected and averaged. To apply a voltage across the cell, a dc power 
supply with an output range of 0−15 V was used. Due to the difference in refractive 
index between ZnSe, 5CB, and air, it was difficult to obtain background spectra without 
encountering interference fringes. Because of this problem, a more experimentally 
efficient reference scheme was adopted for most of the experiments described below. In 
these studies, a single-beam spectrum of the 5CB-filled cell at 0 V was used as the 
background and the field response data were computed and presented as difference 
(rather than absolute) spectra.  
The time-resolved data were acquired at a scan rate of 5 Hz with time resolution set at 
375 μs for a set of 16 coadded scans. The spectral resolution of the scans was 4 cm-1 
and the spectral range was limited to 0−3950 cm-1 using an optical long-pass filter (Bio-
Rad) and an undersampling ratio of 4. Background scans were collected with the same 
setup, but with the IDA disconnected from the voltage source.  
Dynamic electrical polarization experiments were conducted using a programmed 
modulation. A Wavetek function generator applying a square wave pulse of 12.6 V 
across the IDA supplied the cyclic perturbation during the step-scan experiment. The 
width of the pulse was 50 ms (with a rise time of <5 μs) and was applied following every 
mirror step after a 25 ms settling time. This program of the applied potential allowed a 
complete relaxation of the prepared cell from the perturbed state.  

Results 

The liquid crystalline material studied here is the nematic phase of 5CB,18 the structure 
of which is shown in Figure 1. When the molecule is exposed to an electric field of 
sufficient magnitude, its molecular axis reorients along the direction of the applied field. 
The threshold voltage required to initiate reorientation of the molecule is called the 
critical voltage. This electric field-induced orientation of a liquid crystal (Freedericksz 
transition)19 occurs because of the positive dielectric anisotropy of the 5CB structure.20 
This voltage is not sufficiently large so as to eliminate the stronger dimerization of the 
5CB dipoles in the nematic domains.  

 

Figure 1 Structural diagram of 4-n-pentyl-4‘-cyanobiphenyl (5CB). The vector overlaying 
the structure of 5CB indicates the molecular axis used to define the orientation of the 
molecule. 
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Previous studies of organic liquid crystals using FTIR spectroscopy typically sandwich 
bulk samples of the material between two electrodes that are transparent in the infrared 
region (e.g., germainium).10,21,22 When this sandwich geometry is used, the IR beam is 
incident in a direction parallel to that of the applied electric field (Figure 2) and thus the 
liquid crystal (5CB has a positive dielectric anisotropy) orients along the same direction 
as the propagation of the incident IR beam. Additionally, the substrate materials are 
limited to conductive materials that are also transparent in the frequency range of 
interest or nonconductive materials that can be coated with a transparent conductive 
film. Fewer reports appear to have adopted a cell design based on band electrodes.23,24 
A notable exception is the early report of Soref,23 which describes the construction of a 
light valve based on a related (albeit differing) cell design.  

 

Figure 2 Configuration of IR cells typically used for confining liquid crystalline films 
(sandwich geometry):  (a) expanded view and (b) cross-sectional view. The spacing 
between conductive windows is usually on the order of 2−12.5 μm. 

An optical cell design employing an interdigitated array electrode25,26 provides a unique 
sampling geometry for the time domain experiments of interest here and enables the 
confinement of extremely thin samples for study with infrared spectroscopy. The IDA-
based design used in this study is shown in Figure 3a. An IDA consists of many parallel 
bands of electrodes each separated by an insulating gap. As shown in the figure, the 
electrode bands are connected alternately to create an array of electrode pairs. 
Fabrication of an IDA directly onto a ZnSe substrate provides the basis for the cell in 
which a thin film is confined in the gap between electrode bands by a second IR window 
placed directly on top of the IDA (Figure 3b). The thickness of the film can be varied 
continuously by changing the height of the IDA, provided that dust particles are 
excluded rigorously. We found that the fabrication and assembly had to be carried out in 
at least a class 100 clean room to meet the needs of this later requirement. In these 
transmission experiments, the plane of the IDA was oriented normal to the incident IR 
beam. The electric field is applied in the plane of the substrate and thus perpendicular 
to the direction of IR propagation. In this sampling geometry, the orientation of liquid 
crystals occurs along a direction transverse to the beam propagation and thus it is 
possible to observe changes in the optical anisotropy with a wide range of optical 
polarization vectors.  
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Figure 3 (a) Top view of an interdigitated electrode array (IDA) with optical polarization 
defined relative to the electrode fingers. (b) Cross section of thin-layer confinement cell 
with bands 15 μm wide and 15 μm from neighboring bands. The height of the IDA 
defines the thickness of the thin film. Shown here is the thinnest cell, 40 nm thick. 

Previous studies have shown that the surface-induced orientation of a liquid crystal can 
have long-range effects on the bulk order.12 In this study, we investigated the energetics 
and dynamics of the electric field-induced orientation of liquid crystalline films at two 
limiting thicknesses, 40 and 300 nm, to elucidate the nature of the changes that occur 
as the sample dimensions are varied from a thin- to thick-film limit. The IDA pitch and 
size (1 and 15 μm) allow for excellent throughput and provide a large in-plane 
confinement dimension. The optical design used here was deliberately selected to avoid 
diffraction effects and to minimize the contributions that result from the boundary layer 
optical effects due to the Au bands. (We will describe the purposeful exploitation of 
these latter two complex effects in future publications). The latter optical boundary layer 
effects (which have a node at the gold surface in the data taken with optical polarization 
parallel to the gold electrodes)27 are identical for the varying Au electrode thicknesses 
studied. We use these gold bands as a variable shim to provide a flexible and easily 
adjusted transverse confinement dimension. The limiting thickness followed in this study 
(40 nm) corresponds to a layer that is only ∼25 times larger than the long axis 
dimension of the 5CB molecule.  
We use rapid-scan FTIR spectroscopy to determine the net anisotropy of the liquid 
crystalline medium both before and after the electric field is applied and step-scan 
FTIR28-30 to study the dynamics of the orientation and relaxation processes of the 
confined samples. The latter time-domain measurements reveal important differences in 
the energetics of surface-dominated and more bulklike samples of the nematic liquid 
crystal. We describe the results obtained from each of these types of measurements in 
turn.  
The Vibrational Spectrum of 5CB. A representative infrared difference spectrum of a 
thin film of 5CB (40 nm thick) is presented in Figure 4. Assignments for prominent 
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vibrational bands, along with estimates of their transition moment directions relative to 
the molecular coordinates as defined by the long axis vector9,22,31 (Figure 1), are given 
in Table 1. For this spectrum, the cell was held at 15 V and the ratio of the single-beam 
spectrum was determined against a single-beam background spectrum measured with 
the cell held at 0 V. For the spectrum shown, the incident light was polarized 
perpendicular to the direction of the IDA fingers (and thus parallel to the applied electric 
field). In this paper, the IR polarization direction is defined with respect to the IDA 
fingers:  a perpendicular orientation indicates that the IR radiation is polarized 
perpendicular to the electrode fingers (and therefore parallel with the applied electric 
field); a parallel orientation indicates that the radiation is polarized parallel to the IDA 
bands (see Figure 3a).  

 

Figure 4 Infrared difference spectrum of 5CB taken with light polarized perpendicular to 
the IDA bands. The spectrum is the ratio of the 5CB-filled 40 nm cell held at 15 V to the 
same cell held at 0 V. Positive peaks show modes that have oriented perpendicularly to 
the IDA bands while negative peaks represent vibrational modes that have reoriented 
parallel to the IDA bands upon application of the electric field. 

Table 1.  Vibrational Mode Assignments for 5CB and the Transition Moment Direction 
Angle Relative to Molecular Axis Shown in Figure 1 

wavenumber (cm-1) 

 lit.a  obs mode assignment βb (deg)  

3025  3025  phenyl C−H stretch    

2957  2957  methyl degenerate antisymmetric C−H stretch    

2926  2930  methylene antisymmetric C−H stretch  58.8  



2870  2872  methyl symmetric C−H stretch    

2857  2857  methylene symmetric C−H stretch  59.2  

2226  2226  C⋮N stretch  20.0  

1606  1606  phenyl C−C stretch  16.1  

1494  1494  phenyl C−C stretch  15.5  

1460  1466  C−H deformation of pentyl chain    

1397  1398  C−H deformation of pentyl chain    

1185  1185  phenyl C−H in-plane deformation    

1006  1006  phenyl C−H in-plane deformation, breathing    

818  814  phenyl C−H out-of-plane deformation  90 

a References 9 and 22.b The angle between the transition moment direction and the 
molecular axis of the molecule.31 

Vibrational modes absorb light that is polarized parallel to the transition moment 
direction.32 Since we know the transition moment directions of the prominent vibrational 
bands (shown in Table 1) with respect to the molecular axis, it is possible to monitor 
changes in the orientation of the 5CB molecule under an applied electric field using 
polarized IR light. In difference spectra, the changes in a band's intensity is a direct 
measure of the net change in the anisotropy of the LC medium; since both positive and 
negative bands are possible, both a net gain or a net loss in orientation of a specific 
transition dipole moment along the direction of the polarization used can be monitored. 
The spectrum shown in Figure 4, for example, exhibits both positive and negative 
intensity bands (e.g., the νCN stretch at 2226 cm-1 and the C−H out-of-plane deformation 
at 814 cm-1) as would be expected for the normal modes described in Table 1. 
Derivative-like line shapes are also seen in this spectrum; these arise from either peak 
shifts in a fundamental mode (an effect of lesser importance here) or the overlap of two 
modes with different transition moment directions (as is most evident in the C−H 
stretching region).  
In this way, we are able to monitor the orientational changes of thin films of liquid crystal 
under an applied field as well as deduce important information about the net anisotropy 
of the liquid crystal prior to orientation. With regard to the latter point, the data shown in 
Figure 4 implicitly establishes that a significant anisotropy exists in this 5CB film. It is to 
this aspect that we now turn our attention.  
Electric Field-Dependent Organization of 5CB. Our first experiments elucidated the 
net orientations of the 5CB molecules in the 40 and 300 nm films as a function of 
applied potential. Starting with a voltage of zero and increasing by 1 V increments up to 
15 V, single-beam spectra of the cell were acquired and then the ratio to the zero 
voltage reference scan taken. The resulting set of difference spectra show that, via a 
highly anisotropic motion, the long axes of the 5CB molecules rotate progressively to a 
direction parallel with the applied field. The upper panel of Figure 5a presents the 
difference spectra for the CN stretching mode (centered at 2226 cm-1) for the 40 nm film 
at successive voltage steps recorded with the incident light polarized perpendicular to 
the IDA fingers. The CN stretch has a large vector component along the long axis of the 
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molecule; thus, as it orients along the lines of the applied field, the CN peak intensities 
measured in this polarization increase. An analogous set of scans was collected using 
light polarized parallel to the IDA fingers (Figure 5a, lower panel). As is strikingly 
evident, the applied potential has little effect on the difference band intensities seen 
using this polarization (the spectra are essentially a baseline). A quantitative analysis of 
these data is given in Figure 6a, which plots the integrated absolute peak area of the 
νCN stretching mode versus the applied voltage for both I⊥ and I∥ spectra. These results 
suggest that the field-induced reorganization of the liquid crystal molecules in the 40 nm 
film was highly coherent throughout the sample, involving (at a minimum) components 
with orientations lying along a vector perpendicular to the surfaces of the ZnSe cell 
windows. Since the intensity increases in the I⊥ direction, but does not decrease 
commensurately in the I∥ orientation, the simplest analysis would suggest that the 
molecules in the 40 nm thin film project only weakly (if at all) onto the latter direction. In 
other words, there is a nearly homogeneous alignment of the 5CB along the transverse 
cell direction in the absence of an applied electric field. However, spectra taken at 0 V, 
when computed against an empty cell background spectrum (given in the Supporting 
Information), demonstrate unequivocally that the orientation of the 5CB long axis does 
in fact have projections along both the I∥ and I⊥ directions. Taken together, the data 
appear to suggest that the initial state has a net anisotropy along the transverse cell 
direction, but where the molecules are aligned with an azimuthally averaged orientation 
of tilts (Figure 7). The 15 μm spacing of the gold electrode fingers is not a sufficient 
perturbation to induce a net anisotropy of the tilt direction in this plane. This aligned 
state is a thermodynamically driven effect as revealed by the fact that the field-induced 
alignment relaxes completely to this same initial state. It is also interesting to note that 
the data clearly demonstrate a very strong anisotropy in the field-induced molecular 
motions. As shown in Figure 5a, the intensity gained in the I⊥ direction must come from 
a reorientation of the 5CB transition moments moving out of the transverse cell 
direction. Since the average molecular orientation of 5CB at 0 V involves an azimuthally 
averaged orientation of the tilts, the field-induced motions cannot effect all parts of this 
ensemble equally. If this were not the case, then effects should be seen in the I∥ 
direction. Figure 5a shows unambiguously that there is little or no change in the tilt 
anisotropies pointing along this direction in the 40 nm cell. A pictoral discription of the 
initial and field-induced orientations is shown in Figure 7.  



 

Figure 5 Difference peaks of the CN stretch for both parallel and perpendicular 
polarization as voltage is increased in increments from 1 to 15 V. Zero volts is used as 
the reference spectrum. (a) The 40 nm IR cell. The peaks with greatest intensity occur 
at the highest applied voltage (15 V) due to increased anisotropy induced by the applied 
field. No change is seen in the parallel polarization. (b) The 300 nm film of liquid crystal. 
Like the 40 nm film, the intensity in the perpendicular direction increases with increased 
voltage. However, in this thicker film, the intensity decreases when probed with light 
polarized parallel to the IDA fingers. 



 

Figure 6 Peak area versus applied voltage for the CN stretch at 2226 cm-1:  (a) 40 and 
(b) 300 nm film. 

 

Figure 7 Schematic model of the initial and the transition to the electric field-induced 
orientation of 5CB within a single nanocavity. The orientations shown are not a 
quantitative depiction of the canted organization of the 5CB molecules present in the 
absence of an applied electric field. It is not known if the tilt anisotropy extends 
completely to the cell wall. The tilt anisotropy noted reflects an average measured over 
the dimensions of the cell probed by the beam.  

We also performed experiments similar to those described for the ultrathin film on a 300 
nm thick layer of 5CB. To make these latter measurements, a new ZnSe-supported IDA 
with identical spacing and pitch was microfabricated using a gold electrode height of 
300 nm.  
This thick-film sample showed a similar (but less pronounced) tilt alignment than was 
described above for the ultrathin film cell. Notable changes are attendant with the 
increase in the cell size as is clearly illustrated by the data presented in Figures 5b and 
6b. Most notably, the application of the electric field in this case leads to measurable 
changes in the difference band intensities measured for both perpendicular and parallel 
polarizations of the incident light. As expected, the induced orientation of the 5CB is 
along the direction of the applied field. However, the response of this thicker layer 



suggests that some (but not all) of the intensity gained in the I⊥ spectra comes from a 
reorientation of transition moments that have a significant projection along the I∥ 
direction. It is interesting to note that the loss of intensity measured for the νCN mode 
along the I∥ direction is less than the gain seen in the I⊥ direction (Figure 6b). This 
indicates that the reorientation of the 5CB molecules in the electric field must also 
deplete a system of molecular projections that lie along the other remaining (i.e., 
transverse) cell axis.  
When taken together, the data shown in Figures 5 and 6 strongly suggest that interface 
binding effects are weighted very heavily in the phase properties of 5CB in the 40 nm 
film. These surface-controlled behaviors make less significant contributions to the 
overall properties of the sample when the cell dimensions are increased. As we 
demonstrate below, even more striking effects are evidenced in the field-response 
dynamics.  
Time-Resolved Studies. Step-scan FTIR was used to study the dynamics of the 
molecular organizations induced by an applied electric field. Unlike conventional FTIR 
spectroscopy, which uses a single modulation frequency, the mirror in a step-scan 
interferometer is stepped using a more complex set of modulation frequencies.29 In 
descriptive terms, the data are sampled at each retardation and correlated along a 
second time axis. For kinetic studies using step-scan FTIR, it is necessary that a 
reproducible sample perturbation be triggered at each retardation. The resultant effects 
of the perturbation are evidenced in the signal and collected as binned data. Each 
measurement is repeated for the full range of mirror retardations yielding a two-
dimensional array of data composed of one point at each mirror retardation and at each 
time. After the full set of data is collected, an interferogram can be constructed for any 
time during the perturbation process. Upon Fourier transform, the extracted 
interferograms yield time-resolved spectra that show the changes in the sample as it 
responds to the external perturbation. This qualitative (though technically incomplete)33 
description illustrates the essential elements of the measurement, namely, that the use 
of a step-scan acquisition effectively decouples spectral multiplexing from the time 
domain of the sample perturbation. Excellent reviews are available which more 
thoroughly detail this powerful spectroscopic technique.28,30 
We first consider time domain data collected on the 40 nm film of liquid crystal. A 
representative example of a full three-dimensional, time-resolved data set is shown in 
Figure 8. This measurement (obtained for a 12.6 V square wave pulse 50 ms in 
duration) was taken with perpendicularly polarized light and is referenced to a constant 
0 V background acquired using the same instrumental parameters. After a settling time 
of 25 ms, the voltage is applied and an immediate response is measured in the 
orientation of the liquid crystal. By 50 ms, the orientational motions of the 5CB have 
nearly saturated and the difference peaks plateau. After the applied potential is 
removed, the sample relaxes completely to its initial 0 V configuration.  
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Figure 8 Three-dimensional time-resolved spectrum of 5CB. Prominent modes increase 
with time after the applied pulse of 12.6 V, plateau when maximum orientation in the 
applied field is achieved, and then relax back to the preperturbed orientation. 

The change in intensity for any given peak, and thus the change in liquid crystal 
orientation as deduced from its known transition moment direction relative to molecular 
coordinates, can be seen by extracting component bands from the spectra at 
incremented times after the applied pulse. An example of such a data set is shown in 
Figure 9a for the difference band obtained for the νCN mode. The absorbance of any 
peak as a function of time during the entire perturbation can also be extracted from the 
step-scan data set. A plot of three prominent absorption peaks (which increase and then 
saturate during the application of the pulse) is presented in Figure 9b. These plots 
mirror the changes in the anisotropy of the 5CB organization with time and contain 
much information about its complex dynamic response. All the same it is useful to 
consider a simple (and thus only approximate) model for determining rate constants for 
the field-induced orientation and subsequent relaxation of the liquid crystal. The 
simplest functional form for a kinetic fit of the orientation process is a rising exponential 
given by  Figure 10a shows a representative fit for 
the νCN mode centered at 2226 cm-1. Similarly, the relaxation follows an exponential 
decay as given by  Figure 10b shows a calculated fit 
based on this model for the νCN mode centered at 2226 cm-1. The rate constants of 
orientation (korientation) and relaxation (krelaxation) for four prominent but representative 
bands (which also have minimal interference from neighboring modes) were calculated 
using these assumptions to model the 40 nm thin-film data. The calculated rate 
constants, which show good agreement, are reported in Table 2 and plotted in Figure 
11. The data shown are derived from an analysis of the difference bands assigned to 
the aromatic in-plane C−C stretches (1494, 1606 cm-1), the methyl symmetric C−H 
stretch (2870 cm-1), and the C⋮N stretch (2226 cm-1).  



 

Figure 9 (a) Difference peaks for 2226 cm-1 at various times after a 12.6 mV pulse is 
applied. This cross section of Figure 7 illustrates the time scale for the orientation of 
5CB in the electrooptical cell. (b) Intensity traces for representative vibrational mode 
difference peaks of 5CB upon application and removal of an electric field across the 40 
nm thin film. These traces can be fit with rising and decaying exponential functions to 
determine the rate constants for the orientation and relaxation of 5CB. 



 

Figure 10 Fits of normalized intensity traces of the 2226 cm-1 vibrational mode to 
exponential functions:  (a) and (b) 40 nm cell; (c) and (d) 300 nm cell. 

 

Figure 11 Rate constants for the orientation and relaxation of 5CB under an applied 
electric field determined from the fits shown in Figure 10. The rate constants for the 40 



nm film are represented by triangles showing a larger k for relaxation and a smaller k for 
orientation. The rate constants for the 300 nm film are represented by circles and the 
relationship between rate constants is reversed from that of the 40 nm film with k for 
orientation being larger than k for relaxation. 

Table 2.  Rate Constants Measured for 40 nm Film of 5CB 

wavenumber (cm-1) korientation (ms-1) krelaxation (ms-1)  

1494  0.110 ± 0.003  0.2551 ± 0.0002  

1606  0.106 ± 0.002  0.2556 ± 0.0002  

2226  0.108 ± 0.002  0.2545 ± 0.0001  

2870  0.118 ± 0.004  0.2613 ± 0.0003 

The resolution of the step-scan measurement is sufficient to enable a more detailed 
examination of the field-induced orientation and subsequent relaxation dynamics. This 
analysis starts with an appreciation of the fact that the line shapes of vibrational bands 
in condensed-phase media are frequently determined by the contributions made by 
inhomogeneous broadening mechanisms. In a nematic liquid crystal, which can exhibit 
a complex domain structure (and for the thin-film sample examined here, potential 
perturbations may also arise due to the heavily weighted contributions of molecules 
experiencing boundary layer interactions), the field-induced responses need not be 
homogeneous. Rather, the response could reflect the nature of the distribution of 
structural environments present in the sample. We tested for this sensitivity by sampling 
the time domain response of the νCN mode across its heterogeneously broadened line 
width. The CN stretching mode is well resolved from other bands and an evaluation of 
the temporal evolution of its (difference) line shape is therefore reasonably 
straightforward. Rate constants were calculated at the peak maximum, 2226 cm-1, and 
over the width of the absorption band by taking time slices through both its high- and 
low-frequency sides (at 2232 and 2220 cm-1, respectively). The resulting rate constants 
for orientation and relaxation were calculated from fits done as described above; these 
results are presented in Figure 12a. Clearly, for the 40 nm film, the rate constants 
calculated for both orientation and relaxation are consistent wherever they are 
measured across the line width of the peak. It is significant to note that, for this sample, 
the orientation process is markedly slower than that for relaxation.  

 



Figure 12 Rate constants measured across the width of the 2226 cm-1 vibrational mode:  
(a) 40 and (b) 300 nm film. Kinetic inhomogeneity is seen in the orientation of the 5CB 
in the 300 nm film while the other processes appear to be kinetically homogeneous. 

We also examined the dynamics evidenced in a thicker cell (300 nm) with the step-scan 
FTIR method using the same methods applied to the 40 nm film. Two representative fits 
for determination of the rate constants (calculated at the 2226 cm-1 maximum of the νCN 
mode) are shown in Figure 10c and d. The rate constants calculated for the orientation 
and relaxation of 5CB as deduced from several prominent peaks are shown in Figure 11 
and summarized in Table 4. The rate constants are again found to be internally self-
consistent for different vibrational modes of the molecule but they are clearly different 
from the rate constants measured for the ultrathin film. The rate constant for orientation 
is much larger in the 300 nm film (by a factor of ∼2.25), indicating that its field-induced 
motion occurs much more rapidly than for the ultrathin film. The relaxation process has 
a smaller rate constant, however, indicating that it takes longer for the molecules to 
return to the lower energy condition of the net anisotropy found in the initial state after 
the field is removed. As we describe below, these results are consistent with the 
hypothesis that the properties of the ultrathin surface film are strongly impacted by the 
surface interactions that attend the nanoscale confinement.  

Table 3.  Rate Constants off Peak Maximum of CN Stretch, 400 Å Thin Film 

wavenumber (cm-1) korientation (ms-1) krelaxation (ms-1)  

2220  0.110 ± 0.003  0.2572 ± 0.0002  

2226  0.108 ± 0.002  0.2545 ± 0.0001  

2232  0.110 ± 0.003  0.2569 ± 0.0002 

Table 4.  Rate Constants Measured for the 3000 Å Film of 5CB 

wavenumber (cm-1) korientation (ms-1) krelaxation (ms-1)  

1494  0.247 ± 0.004  0.0877 ± 0.0007  

1606  0.247 ± 0.004  0.0890 ± 0.0005  

2226  0.251 ± 0.005  0.0933 ± 0.0006  

2872  0.253 ± 0.011  0.106 ± 0.004 

We again sampled time slices across the line width of the νCN mode to test for the 
presence of kinetic inhomogeneity. Rate constants were measured at 2220, 2223, 2226, 
2229, and 2232 cm-1. These results are summarized in Table 5 and plotted in Figure 
12b. It is most striking that the rate constants measured for the field-induced orientation 
of the thicker film are no longer kinetically homogeneous across the line width of the νCN 
peak. This rate dispersion does not appear strongly, however, in the rate constants 
calculated for the decay of the oriented state (i.e., the relaxation processes behave in a 
kinetically homogeneous way). The data thus suggest the presence of a 
nonhomogeneous thin-film structure in this sample.  



Table 5.  Rate Constants off Peak Maximum of CN Stretch, 3000 Å Thin Film 

wavenumber (cm-1) korientation (ms-1) krelaxation (ms-1)  

2220  0.353 ± 0.008  0.088 ± 0.002  

2223  0.259 ± 0.005  0.0918 ± 0.0007  

2226  0.251 ± 0.005  0.0933 ± 0.0006  

2229  0.247 ± 0.005  0.0959 ± 0.0008  

2232  0.248 ± 0.005  0.097 ± 0.001 

Discussion 

Taken together, the data presented above demonstrate that the dynamics of 5CB under 
an applied electric field differs significantly between an ultrathin film and one with a 
larger bulk component. The data strongly suggest that the 40 nm film exhibits a 
complex, anisotropic change in its net alignment in response to the applied field. This 
feature, perhaps more than any other, makes it clear that the interactions with the ZnSe 
surface strongly affects the orientations adopted by and the relaxation processes of the 
5CB molecules throughout the sample. We had initially believed that the 5CB molecules 
would align preferentially along the direction defined by the gold electrodes with the 
orientation of its long axis lying along the plane of the ZnSe crystal. The polarization 
studies clearly suggest that the 5CB orientation (absent the applied field) is actually 
strongly anchored to give a significant projection along the surface normal direction. 
This orientation is a thermodynamically directed state since, even after repeated 
polarization cycles, the system completely relaxes to this configuration. The 5CB 
molecule is ∼16 Å long. The cavity defined by the 40 nm Au bands is therefore on the 
order 25 times the contour length defined by this molecular dimension. The anchoring 
effect of the ZnSe surface is therefore seen to be both robust and reasonably long-
ranged. We know from X-ray photoelectron spectroscopy (XPS) data (not shown) that 
the ZnSe surface is heavily oxidized:  a complex mixture of oxides and carbonates 
seems to terminate this surface even after careful cleaning procedures. In this light 
then, the strong anchoring we see and the overall anisotropy of the orientation induced, 
is perhaps not that surprising after all.  
The static polarization experiments further serve to reveal the differences that exist 
between the organization and field-induced responses of the 5CB films in 40 and 300 
nm thick cells. For example, the intensity of the CN difference band, the transition 
moment of which has a significant projection along the long axis of the molecule, grows 
markedly in intensity for both cells upon application of the electric field when 
interrogated with perpendicularly polarized light. In the thinner film, there are no 
corresponding intensity changes seen for scans taken with light polarized parallel to the 
IDA fingers (a very surprising result given the azimuthally averaged tilt alignment 
described above). For the thicker film, however, intensity changes (negative) are seen 
in the parallel polarization spectra; these intensity changes, while significant, are 
insufficient to account for the increases seen in the perpendicular polarization data. 
Taken at face value, the data suggest that the 5CB molecules still retain a net 



anisotropy, one demonstrating a preferred (though weaker) projection on the surface 
normal direction in the thicker film.  
It is important to note at this point that some degree of caution is warranted in 
interpreting the intensity changes seen in the static polarization data presented in Figure 
5. These are difference spectra and only report on changes in the net anisotropy of the 
5CB organization in response to an applied electric field. A complex initial alignment in 
the sample, such as that which gives rise to the data shown in Figure 5, will give a 
difference spectrum that masks important contributions to the net organization of the 
sample. For example, any initial dipole moment projections lying along the 
perpendicular polarization direction will go undetected in the field response data 
measured in that direction. If we assume that the population of molecules oriented along 
the parallel direction is similar to that lying along the perpendicular direction (a 
reasonable assumption given the large 15 μm spacing of the electrodes and the likely 
stronger anisotropy that would arise from the ZnSe crystals which is in fact supported 
by experimental data), then the difference spectra shown in Figure 5 are insensitive to 
at least 30% of the net contents of the sample. By extension, the alignment inferred 
from the data shown in Figure 5a cannot be characterized with regard to any net 
projections of the 5CB along the perpendicular direction. Rather, we can say that any 
field-induced tilt off the cell normal direction must be highly aligned along this one 
vector.  
It is important to point out that it is likely that the gold electrode bands do induce a net 
anisotropy in the 5CB samples. We found that shearing the sample along the direction 
of the gold bands does not induce any stable ordering (that is, order that recovers after 
repeated cycling through potential perturbations) of the 5CB director. The boundary 
interactions at the gold, however, could induce anisotropies in the organization of the 
5CB.12 We are currently examining the relative importance of these latter interactions 
via the construction of electrode arrays with very different pitches. There are numerous 
issues of interest in these latter experiments, not the least of which is the fact that the 
limiting dimensions of some of these systems will exceed the diffraction limits of the 
mid-infrared experiments used here. This fact presents both challenges and 
opportunities for experimental design that we will explore in future publications.  
We turn finally to a consideration of the time domain spectroscopy and the nature of 
dimensional scaling seen in the electrooptical dynamics of the liquid crystalline material. 
The data shown in Figure 11 are particularly striking in several regards. Perhaps of 
greatest interest is the inversion seen in the relative ranking of the orientation and 
relaxation rate constants measured for the two limiting cell dimensions. The electric 
field-induced orientation of 5CB in the 40 nm thick sample is much slower than is the 
corresponding process in the thicker cell (the rate constant for the 300 nm film is ∼2.25 
times faster than the orientational rate constant for the 40 nm film). Perhaps more 
intriguing, the relative relaxation rates in these two cells show an inverted ranking; the 
field-induced orientation decays much faster in the thin cell (∼2.73 times faster) than is 
found in the thicker sample. There are several ways one might rationalize this behavior. 
First, we discount any perturbations that result from confinement effects on the apparent 
viscosity of the medium. As an intrinsically anisotropic medium, 5CB cannot change its 
director orientation in a nanoscale cavity without a coupled center of mass motion of the 
molecules (to avoid massive effective pressure changes at the cell walls). These 



motions can be frustrated by walls and is analogous to the functioning of lubricants.34 
The slow orientation of 5CB in the thin-cell sample cannot be due to an effect of this 
sort, since, as we see, its relaxation rate is not similarly perturbed, but, rather, is 
comparatively fast (approaching that found for field-induced motions in more bulklike 
samples). We believe the origin of this effect lies in the surface anchoring interactions 
occurring with the ZnSe crystal surfaces. These interactions strongly pin the orientations 
of the 5CB molecules and thus appear to serve as a force that the field-induced motions 
must overcome. Similarly, this interaction serves to drive the decay of the field-aligned 
state. These latter effects are not as pronounced in the more bulklike sample. The 
interactions do not organize collectively throughout the sample, and as a result, the 
application of the electric field leads to a more facile motion of 5CB molecules. The fact 
that the decay of this latter state is reasonably slow suggests that the process is not 
strongly driven. We believe it is consistent with a thermal redistribution toward a more 
random state. We should point out here, however, that these descriptions provide a 
simple rationalization which accounts for trends developed in simple single-exponential 
fits of the data. There likely exist more subtle features in the dynamics which these 
experiments do not test. We plan to more sensitively test for deviations from single-
exponential responses in future work.  
Another interesting dimensional scaling of the orientational dynamics is seen in the data 
presented in Figure 12. In the nanoscale cavity, the 5CB molecules appear to respond 
as a “coherent” ensemble in that the rate constants measured across the line width of 
the νCN band are kinetically homogeneous. In the thicker cell, considerable kinetic 
heterogeneity is found in the orientation rate constants measured across the 
inhomogeneously broadened νCN line width. This response suggests that this film may 
be characterized by a complex polydomain structure. This structure has not been 
independently established using other methods.35 Still, it seems to be the easiest way to 
rationalize the presence of molecules in this cell with νCN band maximums that are 
shifted by several wavenumbers and exhibit orientation rate constants that differ by 
more than a factor of 2. We should point out that the literature contains many reports of 
kinetic heterogeneity in the electrooptical responses of bulklike liquid crystal 
films.6,7,9,10,22,36 A few of the reports have attributed these effects to an intrinsic 
heterogeneous response of the different segments of the 5CB structure (e.g., the rigid 
core and the flexible tail). We do not believe that segmental arguments of this type are 
valid in this context. First, the rate behaviors of concern here have millisecond lifetimes. 
Millisecond rate behaviors are on a time scale that is far too slow to distinguish the 
segmental dynamics of 5CB (which should occur on a picosecond time scale). The 
current results demonstrate a strong sample (i.e., size)-dependent scaling of the rate 
dispersion measured via a single vibrational mode (the νCN mode), a feature we 
intuitively associate with a polydomain structure in the thicker sample. It is interesting to 
note that a corresponding rate heterogeneity is not seen in the relaxation of the thicker 
5CB sample. Again, we believe that this is consistent with a weakly driven thermal 
decay toward a less anisotropic state.  
This study demonstrates an interesting approach to examining the dynamics of thin 
organic media through the coupled use of time domain vibrational correlation 
spectroscopy and methods of microfabrication. In this report, we did not attempt to alter 
any aspect of the interactions occurring between the cell wall and the 5CB other than 
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through changes in the gold electrode thickness. As noted earlier, we will shortly 
describe more complicated fabrication schemes that enable us to explore the effects of 
narrower gold band spacings, studies that will more strongly weight contributions made 
by molecules residing adjacent to the metal surfaces. In principle, these interactions can 
be sensitively engineered via the use of self-assembled monolayers (SAMs) as has 
been so elegantly demonstrated by Abbott and co-workers.11,15 As we will show, it 
appears very likely that SAMs can also be used to modify the interactions occurring at 
the surface of ZnSe crystals and thus every aspect of the wall anchoring interactions 
should be available for molecular design and direct study. We will describe our progress 
along these lines of study in future publications.  
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